
Center for Exascale Simulation of
Combustion in Turbulence (ExaCT)

Jacqueline Chen, Director
Combustion Research Facility

Sandia National Laboratories
Livermore, CA

SOS16: Quantifying the Costs of Exascale

Santa Barbara, CA

March 12-15, 2012

Why Combustion

•  83% of U.S. energy comes from combustion of fossil fuels
•  National goals

!  Reduce greenhouse gas emissions by 80% by 2050
!  Reduce petroleum usage by 25% by 2020

•  Meeting these goal requires a new generation of high-efficiency,
low emission combustion systems
!  New designs for IC engines, turbines and burners
!  New fuels

•  Examples
!  Engine designs to burn biodiesel for transportation
!  Fuel flexible turbines for power generation

•  Why exascale
!  Current design methodologies are largely phenomenological
!  Lack the science base needed to develop new devices / fuels
!  Exascale computing will enable high-fidelity simulations of

complex fuels at realistic turbulence and pressure conditions with
quantified uncertainty

!  Key element needed to develop and calibrate models needed for
engineering design

•  Use cases based on increasing pressure and fuel complexity

!"#$%&'()*(+*,-.*
/#"00"()0*+1(#*&*
%(2*02"1%*")3/45(1*
+$/%0*67*89*

!"#$%&'()*(+*&*)"51(:/);
<"%$5/<*=7<1(:/)*3/5*")*
41(00>(2*

•  Fuel streams are rapidly evolving
!  Heavy hydrocarbons

•  Oil sands
•  Oil shale
•  Coal

!  New renewable fuel sources
•  Ethanol
•  Biodiesel

•  New engine technologies
•  Direct Injection (DI)
•  Homogeneous Charge

Compression Ignition (HCCI)
•  Low-temperature combustion

•  Mixed modes of combustion (dilute,
high-pressure, low-temp.)

•  Sound scientific understanding is
necessary to develop predictive,
validated multi-scale models!

Motivation: Changing World of Fuels and Engines

A
p

• Multi-scale modeling describes IC
engine processes, from quantum
scales up to device-level, continuum
scales

•  Needs:
• Develop a general theoretical framework
for transfer of information from one
scale to the next

• Use HPC to bridge the current gap
between coarse-grained atomistic
approaches and fine-grained continuum
approaches

 Multi-scale Modeling of IC engine processes

Direct Numerical Simulation
•  Used to perform first-principles-based

DNS of reacting flows

•  Solves compressible or low-Mach
reacting Navier-Stokes equations

•  High-fidelity numerical methods (high-
order finite difference and AMR

•  Detailed reaction kinetics and
molecular transport models

•  Multi-physics (sprays, radiation and soot)

•  Runs on all major platforms, scales well
to 10-20 pflop machines

DNS provides unique fundamental
insight into gas-phase chemistry-
turbulence interactions

DNS
Physical
models

Engineering CFD
codes (RANS,

LES)

Co-Design Objectives

•  Goal of ExaCT is to influence the sea-change in architecture
and software of next generation systems - driven by power and
cost constraints - to be well-suited for combustion simulation
!  Higher concurrency in low-power many-core, possibly heterogeneous

nodes

!  Performance based on memory access patterns and data movement,

 not FLOPS
!  High synchronization costs

!  Reduced memory per core

!  Increased disparity between I/O and compute speed

!  Machine complexity – fault tolerance in all aspects of stack

Major Themes for Combustion Co-design

•  Integrate analysis with simulation
!  Combustion simulations are data rich
!  Writing data to disk for subsequent analysis is currently near infeasibility
!  Integrate analysis and uncertainty quantification directly into simulation process
!  Makes simulation look much more like physical experiments in terms of

methodology

•  Rethink implementation and analysis of basic algorithms in terms of
potential architectures
!  Expose more concurrency
!  Distributed AMR metadata
!  Analysis of algorithms has typically been based on a performance FLOPS paradigm

– can we analyze algorithms in terms of a more realistic performance model
•  Develop programming models more suited to new architectures

!  MPI provides reasonable approach for coarse-grained parallelism but tools at fine-
grained level are inadequate

!  We express codes in terms of FLOPS when data layout and data movement control
performance

•  Evaluate performance impact of hardware tradeoffs and provide input to
vendors

•  Iterative co-design loop (joint exploration of hardware and algorithm space)
•  Proxy applications: skeletal, node-level (compact apps and compute kernel apps)

•  Abstract machine model – open architectural simulators, prototype hardware

•  Data abstractions, programming models (DSL’s) and supporting runtime

•  Bi-directional interface with vendors

Co-Design Process

Co-design Consortium Vendor Operation Plan, 2012

•  Programming models
–  Develop programming methodologies that allow us to express the

algorithms
•  Expressiveness
•  Performance
•  Execution model

–  Evolve an abstract machine model
•  Capture key aspects of performance
•  Simple enough to inform algorithm development

–  Fault tolerance

•  Simulators
–  Tests of alternative architectural features
–  Develop to meet co-design theme requirements as needed

•  Bi-directional interface to vendors

CS Aspects

9 Co-Design Review

ExaCT Organizational Chart
Internal Steering Comm. Management Team

Director: Chen
Deputy Director: Bell

Project Manager: Moreno

External Advisory Board

Kathy Yelick Marc Snir
Kwan-Liu Ma Marsha Berger
Vivek Sarkar
Barney MacCabe

Math
Lead: Bell

UQ
Lead: Moser

Simulators
Lead: Shalf

?@A*!(%B/1*C/5=(<0*

D")/&1*!(%B/10*

@&5&*!51$45$1/EFCG*
C/5&<&5&*
!"):%/*H(")5*I=/1#(;*
J=/#"0517*K/1)/%*

L)*!"5$*MN*

!#&15*!&#H%"):*

?(%7)(#"&%*J=&(0*

I1&)0"/)5*F<3(")50*

J=&('4*!705/#0*

Programming
Models/Autotuning
Lead: McCormick

J(#6$0'()**
F6051&4'()0*
@(#&")*!H/4"O4**
?1(:1&##"):*D&):$&:/*
G$);'#/*!705/#0*

F$5(5$)"):*

P&$%5*I(%/1&)4/*

!"#$%&'()*(+*!Q/%/5&%R*
,(</*&)<*J(#H&45*FHH0*
F14="5/45$1&%*!"#$%&'()*
J(#H"%/1*!$HH(15*+(1*
8&1<2&1/E!(S2&1/**
!"#$%&'()*
!!I*C&41(*

!!I*C"41(*

Chen
Bell
Moser
McCormick
Klasky

Pascucci
Quinlan
Shalf

SDMA Co-Leads:
Klasky/Pascucci

@&5&*!5&:"):**
L)+1&051$45$1/*
T(1Q>(2*!4=/<$%"):*
F)<*G/0"%"/)47*
L)*0"5$*I(H(%(:"4&%*
F)&%70"0EU"VW**
L)*0"5$*!5&'0'4&%**
F)&%70"0*&)<*G/<$4'()*
@&5&*D&7($5*

PDE Solver / UQ Co-Design Team (Lead: Bell, UQ Lead: Moser)

In situ Scientific Data Management and Analytics / UQ Co-Design Team (Co-Leads:
Klasky/Pascucci)

Combustion Science Driver and Requirements
Lead: Chen

Highlights from Cross-cut Areas

•  PDE Solver Algorithms/Implementations
•  Intrusive UQ

•  SDMA and in situ Analytics/Viz.
•  Programming Models

•  Hardware Simulation

Reacting Flow Simulation Methodology

•  Physical processes
!  Detailed chemical kinetics

•  Highly nonlinear

•  10’s-100’s of species

•  100’s or 1000’s of reactions

•  Rich internal flame structure
!  High fidelity species transport

•  Complex nonlinear parabolic systems

!  Turbulent fluid mechanics

•  Compressible, variable viscosity (full stress tensor)

•  Need to resolve several decades of scale
– Domain -> integral scale -> Kolmogorov scale

!  Radiation (optically thin)

Internal structure of methane
flame: 53 species; 325 reactions

Simulation Methodology: Combustion Requirements

•  Target use cases are high-pressure
flames with complex fuels
!  Flames become much thinner as pressure

is increased
!  Chemical and transport parameters are not

well-known
!  Intermittency (e.g. ignition, turbulence)

•  Requirements for methodology
!  Adaptive mesh refinement

•  Turbulence and flames have different
resolution requirements

!  Support multiple flow regimes
•  Compressible Navier Stokes
•  Low Mach number formulation
•  Common framework

!  Integrated UQ and in situ analytics

Core Exascale Issues

•  Basic discretization methodology
!  Reduce memory movement and memory capacity / FLOP
!  Expose more concurrency
!  Express and manage data locality
!  Reduce synchronization
!  Analysis of algorithm in terms of NEW cost-model for abstract machine -- measure

algorithmic complexity in terms of costs of memory and data movement instead of
FLOPs

•  Linear solvers
!  Reduced communication / synchronization

•  AMR
!  Hierarchical metadata
!  Data-movement aware operations (include cost of data movement in regridding)
!  Reduced synchronization

•  All of this issues need to be address in terms of tradeoffs in architecture
!  Internode network topology
!  Intranode design
!  Individual core characteristics

Interface
•  What are the key questions at the interface of math, programming

models and hardware?
•  Horizontal data locality

!  Control data layout on a node
!  Data layout matched to intranode connectivity / topology
!  Reduce, eliminate or localize cache coherence
!  These require programming model to provide tools to express the relevant

constructs
•  Use type-system to express data layout and topology
•  USE DSLs or other higher-level constructs to make locality implicit

•  Vertical data locality
!  Control data motion through cache/memory hierarchy (to processor and

back)
!  Maximize reuse of data to reduce memory access
!  Requires programming model support

•  Constructs to make software managed memory and explicit data motion
easier to use

AMR at the Exascale

•  AMR can be viewed as minimizing the number of degrees of
freedom needed to represent the solution
!  An a priori good match to reduced memory exascale architectures
!  Structured-grid AMR is naturally suited to hierarchical parallelism

•  Domain is covered by large aggregate patches of data

•  Need to deal with algorithmic complexity
!  Hierarchical treatment of data metadata

•  Regions of decreasing granularity
•  Only store details about your region and its neighbors
•  AMR retains locality – it’s just more complex

!  Regridding and dynamic load balancing more holistic
•  Include all factors in estimating cost of next step

–  Cost of data movement
–  Heterogeneous node performance

!  Restructure integration to reduce synchronization and increase concurrency

Execution Model

•  What is a good choice of execution model? How does best choice
depend on architectural details?

•  Current bulk synchronous approach is probably not the best choice
!  Sources of performance heterogeneity are increasing

•  Examples of heterogeneity include:
–  Thermal-performance throttling
–  Software fault-recovery (creates performance perturbations)
–  Adaptive algorithms and non-uniform cost of chemistry ODE

solves

•  Asynchronous models to tolerate heterogeneity
!  Asynchronous task execution based model
!  Data flow / functional model
!  Open questions:

•  At what granularity should we express the model?
•  Do algorithms need to be changed to better reflect alternative models

Development of Combustion Proxy Apps

•  Refactor compressible integration methodology, S3D, into the
BoxLib framework (S3D-Box)
!  Establish baseline common data abstraction

!  Prelude to adaptive implementation

!  Expose underlying data dependencies

•  Facilitates mapping onto alternative node architectures
•  Enable deep dependency analysis for compiler transformations /

DSL definition

•  Define multigrid compact app
!  Representative of communication intensive parts of algorithm
!  Skeletonization to extract communication patterns

•  Analyze impact of network topology, latency and bandwidth on
performance

Proxy Apps, cont’d

•  Develop compact apps for physical property evaluation and
stencil operations
!  Test different strategies for mapping data onto nodes

!  Basis for evaluating node architecture options

!  Extract key kernels for more detailed analysis

•  Performance tuning/modeling
•  Evaluation of core-level architectural features

•  Develop simplified AMR compact app
!  Extract skeleton for analysis of data movement / communication

patterns

!  Analyze impact of network characteristics on AMR performance

!  Baseline for refactoring core AMR toolset

Uncertainty Quantification: Goals & Challenges

•  Science Questions: How are predictions of detailed turbulent flame
dynamics (e.g. extinction) and average combustion properties (e.g. NOx)
impacted by uncertainties in chemical reaction models? What new data are
needed to reduce these uncertainties?

•  UQ computational challenges arise because:
!  Simulations are expensive
!  There are many uncertain parameters
!  Turbulence is chaotic

•  Develop the exascale opportunities to address these issues:
•  Use adjoints for sensitivity derivatives, but must evaluate possible time

horizon, since linearized solutions grow exponentially
•  Use polynomial chaos expansions but must evaluate utility for chaotic

systems

UQ: Methodology & Algorithms

•  Adjoint formulation to be integrated in S3D-Box
!  Adjoint-consistent numerical methods

!  Adjoints are computed backward in time, linearized about forward
solution

!  Storage and staging of check-point data needed for adjoints (SDMA)

!  Possibility to perform adjoint analysis in local space-time domains to
save storage (SDMA)

•  Polynomial chaos formulation implementation in S3D-Box
!  Low-level software support for PCE calculations (DSL's)

!  Can attain high flop/memory access

!  Address numerical issues with linear and non-linear solvers
!  Assessment of convergence of PCE representation

SDMA Technologies

Hybrid Staging – Basics

In Situ Processing Resources: Execution Model:

(1)  InLine or Helper Cores (1) I/O Graphs: task-based analysis/viz
(2)  Staging Nodes (+GPUs, NVRAM) (2) Asynch. Data Movement: IB, Portals, …
(3) Offline – post storage ` (3) Managed Execution: Containers, …
(4) Remote and Cloud Resources (4) Cloud Access/Usage: S3/EC2 bindings

DataTap =>
SmartTap =>
Staging Objects =>
Task Containers

Assume: ADIOS APIs

Volume rendering can be performed in situ
using < 1% of simulation time, providing
insight into variable interactions.

Topological methods provide compact
representations,
creating drastic data
reductions

Hybrid staging allows visualization and analysis
components to be easily programmed so that some
are executed on cores where the application is
running, and some are executed on a remote staging
area, which is all on the same HPC resource.

SDMA High Level Goals

•  Co-design the knowledge discovery process for exascale combustion
science

•  Reduce data movement required for downstream analysis & exploration
!  Characterize features of interest efficiently using topological analysis

techniques
!  Visualize data with embedded topological features

•  Abstract I/O, visualization and analysis through a componentized
middleware and utilize a SOA approach to accelerate in transit tasks

•  Study communication and node-level behaviors and understand
tradeoffs for the SDMA suite of routines

•  Integrate DSL/programming model abstractions into visualization &
analytics codes to abstract hardware-specific optimizations

•  Support in transit processing for integration of UQ within the SDMA
infrastructure

S3D with Staging

•  ADIOS is being implemented as a Service Oriented Architecture
!  Create an environment where applications can abstract data movement/IO

as read/writes/queries

•  Exploit complex-memory hierarchies with Hybrid Data Staging to:
–  Decrease the gap between CPU and IO speeds
–  Dynamically deploy and execute data analytical or pre-processing operations

either in-situ or in-transit

–  Improved IO write performance

Co-design the Analytics Pipeline

•  Optimization:
•  Where/How should analytics be

run?
!  Inline with simulation?
!  Separate cores? Helper cores?
!  Separate staging nodes?
!  Offline?

•  Guided by what metrics?
!  Performance: Total Execution Time

 of both simulation and analytics
!  Cost: CPU hours charged for simulation and analytics
!  Time to Data: Delay between data generation and analytics

results
!  Data movement ~ Power consumption

Visualization Within SDMA

•  Goals:
–  Define initial compact applications

•  Representative parallel visualization algorithms for simulations,
UQ, and topological analysis

–  Connect visualization with SDMA system as auxiliary
service

•  Research Topics:
–  Mechanisms for visualization routines to access data from

simulations, UQ, and topological analysis
–  Mechanisms for visualization routines to save and transfer

results
–  Characterization of data movement and communication of

visualization routines within SDMA
•  Programming model
•  Architecture simulation

Previous In-Situ Visualization Implementation

Simulation

Time t Time t + !t

Simulation

Post Processing

In-Situ Visualization

void s3drender_init_(
 int *myid, int *gcomm,

 double *species,
 char *speciesNames,

 double *loc,

 double *x, *y, *z,
 int *nx, *ny, *nz,
 int *npx, *npy, *npz,

 int neighbors[6])

MPI Communicator

pointer to local scalar variable

size and coordinates of
global domain

and local partition

neighbor processors

pointer to local particle data Simulation Visualization

Current Initial Integration Effort

Simulation Visualization
ADIOS

s3d_adios_render_init_() {
 ADIOS_FILE *f = adios_fopen(…);
 ADIOS_GROUP *g = adios_gopen(…);

 ADIOS_VARINFO *v = adios_inq_var(…);

 v->dims[0], v->dims[1], v->dims[2];

 adios_read_var(…);

 …

}

ADIOS file and group handles

ADIOS variable information

size of global domain

pointer to local variable

 MPI communicator and
domain partition are decided

by visualization

Visualization

Current Initial Integration Effort

•  Visualization Result
!  Simulation: Jet-in-Cross-Flow

!  Variable: H2

!  Domain Grid: 1408x1080x1100

!  Directly render data from
ADIOS BP file through ADIOS
APIs

•  “Abstraction-driven” co-design
–  Fundamental in the design of

domain-specific languages (DSLs) and
supporting runtimes

–  Iterative process from the hardware
“up” and the application “down”

•  Incorporation of auto-tuning to
produce better code

•  Development of compact-apps key
to co-design of abstractions and
understanding implications of
architectures

Programming Model Overview

T
ra

di
tio

na
l H

PC
 S

ta
ck

Applications

Language(s)

Runtime

Compiler

Hardware

Operating Sys.

Applications

Language(s)

Runtime

Compiler

Hardware

Operating Sys. C
o-

D
es

ig
n

St
ac

k

T
ra

di
ti

on
al

 H
PC

 S
ta

ck

Note: No coverage in OS space…

PDEs UQ SDMA/Vis

Hardware

Shared Abstractions

Domain
Abstractions

Domain
Abstractions

Domain
Abstractions

Domain Abstractions

Combustion

Programming Models
 Overview – Domain-Specific Languages

Performance

Productivity Generality

DSLs

•  Fundamental trade-off is
generality vs. specialization

•  Focus on embedded DSLs: a
language that in some fashion extends
an existing general-purpose language

•  Example: Liszt (Stanford)
–  Single source, multiple targets

–  See SC11 paper

- Assumes portability…

Overall CoDesign Flow
Automatic Generation of Skeletons for Rapid Analysis

32

Overall CoDesign Flow
Automatic Generation of Skeletons for Rapid Analysis

33

We are talking
about this part

right now

CECDC CoDesign Tools Overview
Architectural Simulation to Accelerate CoDesign

SST

•  System level
models

ACE

•  Node level
emulation

ROSE
•  Application

Analysis

ROSE Compiler: Enables deep analysis of
application requirements, semi-automatic
generation of skeleton applications, and code
generation for ACE and SST.

ACE Node Emulation: Rapid design synthesis
and FPGA-accelerated emulation for rapid
prototyping cycle accurate models of manycore
node designs.

SST Macro System Simulation: Enables system-
scale simulation through capture of application
communication traces and simulation of large-
scale interconnects.

SST Micro Software Simulators: Software
simulation for node-level simulation

SST

ACE

ROSE

CoDEx: CoDesign For Exascale

ASCR-funded Simulation
Infrastructure Project

SST: Structure Simulation Toolkit

NNSA-funded Simulation Tools
(ASC Program)

Role of Architectural Simulation

–  Simulate hardware before it is built!

–  Break slow feedback loop for system designs
–  Protect vendor IP

–  Insert applications and algorithms into the tightly
coupled hardware CoDesign process

Cycle Time!

1-2 days!

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

T
o

ta
l

G
fl

o
p

/
s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naïve

Synthesize SoC (hours)

Build application

Emulate

Hardware

(RAMP)

(hours)

Autotune
Software

(Hours)

Cycle Time!

4-6+ years!

Design New System

(2 year concept phase)

Port Application

Build

Hardware

(2 years)
Tune

Software

(2 years)

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

T
o

ta
l

G
fl

o
p

/
s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naïve

SST

ACE

ROSE

!"#$%&'()*+",-%"./*

!"
#
$%
&'

()
*!
0(
1-
23
&4
&%
%-
%"5
#
*

!""#

!"$#

!"!#

!"%#

!"&#

!"'#

!"(#

!")#

*+,-.#
/,.00#

12345#
63+-73+.#
89-.:#

;9,/6#
<-.3#

*3,0.#
3=-#
.>.45#

?.+@#
/99-#

.0A835.0#

18,:3A9=B#
######C+..=#D:306#

*9=0A5,AE.#
89-.:0#

*93+0.F/+3<=.-#
0<8,:3A9=B#
GGHI834+9#

Architectural Simulation Plan

•  Validate Simulation Infrastructure
!  We are using predictive simulation capability to understand the consequence of

hardware/software trade-offs in co-design
!  Therefore must ensure it is correctly predicting hardware performance and energy

(V&V)
•  Interconnect Simulation

!  Collect communication traces to understand existing codes
!  Generate communication skeletons to enable extrapolation of traces for future systems

•  Node Simulation
!  Bring up proxy apps (S3D & LMC kernels and compact apps) on simulator compilers
!  Study opportunities for integrating more computation in memory system and scalable

alternatives for cache coherence and consequences to language design
•  Crosscutting issues

!  Establish Vendor Interactions and collaborations
!  Develop common set of metrics and parameters for Abstract Machine Model for target

exascale systems (define in Abstract Machine Model “Living Document”)
!  Integration of Node simulation with Interconnect simulation
!  Integration/leverage other DOE-funded Exascale Research (Execution Models, Data

Movement Dominates, CoDEx, SUPER)

Integrated Simulation Tools Environment

SST/macro

skeleton
app

sy
st

em
C

PhoenixSim

DRAMsim2 FLASHsim

Address
Translation

Compute/Processor
Model

(tensilica, m5, gpu…)

Workload
Translation

kernels

SystemC

SystemC

SystemC

Flavors of Structural Simulation Toolkit (SST)

Entire Machine Whole Node Single Processor

SST Micro Simulator
(Processor Core, Memory,
single-GPU)

SST Macro Simulator
(Multi-node, Interconnect

Initial SST Results

•  Focus on initial serial compact apps in SST Micro

•  Serial S3D compact app running on GEM5 simulator
!  AMD 2.90GHz K-10 core, A8-3850 (2011) Processor

!  Code compiled with gfortran 4.4, -O3

!  Simulated runtime - 2.609 seconds

!  Benchmarked runtime - 2.857 seconds
!  Error - 8.68%

Initial SST Results

•  SST Micro simulator results show:
!  Very low L1, L2 miss rates - less than 0.1%

!  Instruction breakdown to CPU inits:

•  Integer arithmetic - 55.32%

•  Floating-point - 18.15%

•  Memory reads - ~20%
•  Memory writes - ~6.46%

Approaches to Managing Vendor Interactions
•  The “Wall”

!  Throw compact apps (and other items) over the wall for vendors to consider
!  Or vendor asks us to answer questions like “how big should the cache be?” or evaluate

feature to help with “sort” operations (normally a cache-buster)

•  IP Firewall
!  One person per vendor interaction gets deep-NDA (then permanently contaminated)

•  Collaborate with the “research division”
!  Resolving who owns patent rights
!  Still danger of IP contamination

•  Public/Private repeatable experiments (we are building towards this model)
!  Use open simulators + compact apps to do experiments in the open
!  Provide those apps + simulation conditions to vendors so they can repeat the experiment

using their internal resources
!  If results agree, we can influence their design choices
!  If they disagree, they can identify what we are missing without exposing IP

•  Component Sharing: (can they share their “secret sauce” as black-box?)

Thanks!

•  Questions? jhchen@sandia.gov
•  Stay tuned for our website in mid-April:

 exactcodesign.org

